
Chapter 3

Propositional logic

When we study logic we usually start with propositional logic, which introduces
the basic logical connectives:

conjunction The logical operation and which is usually denoted as _^_ or
as _&_ as an operation on Bool.

disjunction The logical operation and which is denoted as ___ or as _|_ for
Bool.

negation The logical operation not which is denoted as ¬ or as ! for Bool.

implication The logical operation if . . . then . . . which is written as _)_ but
has not standard notation as an operation on booleans.

logical equivalence We often say if, and only if which is abbreviated as
iff, this is written as ,. For Bool this just corresponds to equality on
booleans which we will write _==_.

Propositional logic is usually the first step which is later followed by pred-
icate logic which introduces the quantifiers for all 8 and exists 9. While
propositional logic is simpler it is somehow abstract because we cannot say any-
thing interesting because we cannot form interesting propositions yet. Hence
we use logical variables to form propositions and study logical tautologies, that
is propositions that are true for every assignment of truth values.

Before we explain the type theoretic approach using propositions as types,
we review the classical semantics using Bool.

3.1 Boolean logic

What is a truth value or a proposition? The classical approach is to equate
propositions with Bool which is a type with exactly two values true and false.
We could use the operations on types we have introduced in the last section to

29

30 CHAPTER 3. PROPOSITIONAL LOGIC

define Bool as >] > but we will just use the mechanism of datatypes and
define:

data Bool : Set where
true : Bool
false : Bool

Now to define _&_ we use pattern matching:

& : Bool ! Bool ! Bool
true & y = y
false & y = false

The idea is that if the first parameter is true then the result of true & y is
just y, while if the first parameter is false then false & y == false for all y.
We could have also used the 2nd parameter since the operation is commutative.
Actually this is a tautology: x & y == y & x that is this expression is true for
all possible values of x y : Bool. We can show this by drawing a truth table:

x y x & y y & x x & y == y & x
false false false false true
false true false false true
true false false false true
true true true true true

Actually I haven’t yet defined the function _==_ but I leave this as an exercise.
Next we define the operation boolean or:

| : Bool ! Bool ! Bool
true | y = true
false | y = y

The idea is similar as for &: if the first parameter is true we already know that
true | y ⌘ true but of the first parameter is false then false | y ⌘ y. We leave
the verification that _|_ is commutative as an exercise.

Already with _&_ and _|_ we can explore a number of laws, which are
the laws of boolean algebra. As in arithmetic we have the law of distributivity
x* (y+z) ⌘ x*y + x*z which now becomes x & (y | z) ⌘ x & y | x & z. When
writing the law we already exploited the convention that _&_ binds stronger
that _|_.

3.1. BOOLEAN LOGIC 31

As above we can verify the law by drawing the truth table:

x y z x & (y | z) x & y | x & z x & (y | z) == x & y | x & z
false false false false false true
false false true false false true
false true false false false true
false true true false false true
true false false false false true
true false true true true true
true true false true true true
true true true true true true

Actually we don’t have to look at the whole truth table but we can show
directly that x & (y | z) and x & y | x & z are equal. We only look at x we have
two case x = true and x = false. In the case x = true we can reason for the
left hand side:

x & (y | z) = true & (y | z) using the definition of _&_
= y | z

and for the right hand side:

(x | y) & (x | z) = (true & y) | (true & z) using the definition of _&_ twice
= y & z

Hence both sides are identical. In the case x = false we can also show that
both sides are identical:

x & (y | z) = false & (y | z) using the definition of _&_
= false

and for the right hand side:

(x | y) & (x | z) = (false & y) | (false & z) using the definition of & twice
= false | false using the definition of |
= false

Other important equations are the de Morgan laws, which are basically the
observation that the truth tables of _&_ and _|_ can be obtained from each
other by switching true and false. To express this we need negation:

!_ : Bool ! Bool
! true = false
! false = true

The de Morgan laws now are:

x y ! (x | y) ! x & ! y ! (x | y) == ! x & ! y
false false true true true
false true true true true
true false true true true
true true false false true

32 CHAPTER 3. PROPOSITIONAL LOGIC

x y ! (x & y) ! x | ! y ! (x & y) == ! x | ! y
false false true true true
false true false false true
true false false false true
true true false false true

Let us verify the 2nd one again by equational reasoning, again we only need
to consider x.

x=true

! (x & y) = ! (true & y)
= ! y

! x | ! y = ! true | ! y
= false | ! y
= !y

x=false

! (x & y) = ! (false & y)
= ! false
= true

! x | ! y = ! false | ! y
= true | ! y
= true

We will soon see how paper proofs like this can be done in Agda itself (see
section 6.7 exercise 3).

3.2 Propositions as types

While the boolean semantics is quite standard it has some serious shortcomings.
Can we really identify truth values with Bool? There are many propositions of
which we don’t know wether they are true or false hence we cannot assign a
boolean value to them. The problem becomes obvious once we move on to
predicate logic: a predicate over the natural number would be just a function
P : N ! Bool but what is the truth value of the statement that P is true for
all natural numbers 8 x : N ! P x : Bool? We would have to check P for
infinitely many inputs which is clearly not possible.

In Type Theory we use another definition of truth values, instead of saying
that a proposition is either true or false, we say that a proposition is something

3.2. PROPOSITIONS AS TYPES 33

we can have evidence for. A proposition holds if we can find evidence. It isn’t
always clear wether we can find evidence for a proposition hence this is different
from the boolean explanation. Indeed this interpretation is associated with
intuitionistic logic, which has different laws than boolean algebra (it is called
Heyting algebra).

To be precise we identify propositions with Set that is we assign to any
proposition the type of evidence for it. 1

prop = Set

We will use P Q R to stand for arbitrary propositions (i.e. elements of prop).
What is evidence for P and Q that is P ^ Q? Clearly it is a pair p , q of evidence
p : P and evidence q : Q. That is:

^ : prop ! prop ! prop
P ^ Q = P ⇥ Q

Similarly, evidence for P or Q is the sum of evidence for P and Q:

___ : prop ! prop ! prop
P _ Q = P] Q

Implication which doesn’t play a central role in boolean logic is central in intu-
itionistic logic. What is evidence for P) Q? It is a function that transforms
evidence for P to evidence for Q. Hence:

) : prop ! prop ! prop
P) Q = P ! Q

We also need to define the logical constants: True has a trivial proof, while False
is the empty type, there is no evidence for it.

True : prop
True = >
False : prop
False = ?

Having all these we can define negation by saying that ¬ P holds if P entails
impossible:

¬ : prop ! prop
¬ P = P) False

We also define logical equivalence as implications going in both direction, which
is somehow obvious from the symbol used:

1Don’t confuse this with Agda’s proof-irrelevant Prop, which identifies all elements of a
proposition. We will discuss proof-irrelevance later.

34 CHAPTER 3. PROPOSITIONAL LOGIC

, : prop ! prop ! prop
P , Q = (P) Q) ^ (Q) P)

In the boolean setting we were able to use equality _⌘_ for logical equivalence.
This is not possible in the propositions as types explanation presented here. 2

We use the usual assumptions how to read logical formulas:

• _^_ binds stronger than ___.

• ___ binds stronger than _)_.

• _)_ binds stronger than _,_.

• _)_ is right associative (like _!_).

The following table summarizes our definitions of logical connectives:

latin english logic types / definitions
Conjunction And P ^ Q P ⇥ Q
Disjunction Or P _ Q P] Q
Implication if-then P) Q P ! Q

Verum true True >
Falsum false False ?

Negation not ¬ P P) False
Equivalence if-and-only-if P , Q (P) Q) ^ (Q) P)

Let’s revisit the tautologies we have shown using the boolean interpretation
earlier. Certainly _^_ is commutative, because _⇥_ is. We only need to show
one direction because the other one follows by symmetry. We can show it easily
by copatternmatching:

^-comm! : P ^ Q) Q ^ P
proj1 (^-comm! x) = proj2 x
proj2 (^-comm! x) = proj1 x
^-comm : P ^ Q , Q ^ P
proj1 ^-comm = ^-comm!
proj2 ^-comm = ^-comm!

Since we have declared a constructor for _⇥_, namely _,_ we could have
proven ^-comm! also by pattern matching:

^-comm! : P ^ Q) Q ^ P
^-comm! (p , q) = q , p

which is sometimes more convenient as the next example shows.
Let’s prove that _^_ distributes over ___, that is:

2However, we will recover this identification when we introduce Homotopy Type Theory
later, which also uses a small modification of the translation presented here.

3.2. PROPOSITIONS AS TYPES 35

^_-distr : P ^ (Q _ R) , (P ^ Q) _ (P ^ R)

Let’s use the Agda system to construct the proof / program interactively. We
start with

^_-distr = ?

Our first step is to use copattern matching to split _,_ which is defined as a
conjunction in its two parts:

proj1 ^_-distr = ?
proj2 ^_-distr = ?

We first focus on the _)_ direction. This is a function hence let us introduce
an assumption / parameter:

proj1 ^_-distr x = ?

Our goal is to prove P ^ Q _ P ^ R and we can use x : P ^ (Q _ R). Our next
step is to analyze our assumption using pattern matching:

proj1 ^_-distr (p , qr) = ?

We now have p : P and qr : Q _ R. We analyze qr further which means we get
two cases:

proj1 ^_-distr (p , inj1 q) = ?
proj1 ^_-distr (p , inj2 r) = ?

Now we are cooking with gas. In the first case we have q : Q hence we can
prove P ^ Q _ P ^ R. But first of all we have to decide wether we use inj1 or
inj2. No proces for guessung which one:

proj1 ^_-distr (p , inj1 q) = inj1 ?

Now we are left to prove P ^ Q which is no problem with the assumptions lying
around:

proj1 ^_-distr (p , inj1 q) = inj1 (p , q)

The next line works the same way:

proj1 ^_-distr (p , inj2 r) = inj2 (p , r)

At this point I am getting bored and just complete the program:

proj1 ^_-distr (p , inj1 q) = inj1 (p , q)
proj1 ^_-distr (p , inj2 r) = inj2 (p , r)
proj2 ^_-distr (inj1 (p , q)) = p , inj1 q
proj2 ^_-distr (inj2 (p , r)) = p , inj2 r

36 CHAPTER 3. PROPOSITIONAL LOGIC

I hope you have been getting bored too. Indeed it shouldn’t be difficult to write
this little program without much interaction but I wanted to demonstrate how
to do it step by step because in some cases this may be necessary.

In this instance the two functions we define to show a logical equivalence are
actually inverse to each other, but this is not always the case. So for example:

^-dbl : P , P ^ P
proj1 ^-dbl p = p , p
proj2 ^-dbl (p ,) = p

These two functions are not inverse, e.g. if we start with 2 , 3 and go back and
forth we end up with 2 , 2.

Next we revisit the de Morgan laws, the first one is no problem:

dm1 : ¬ (P _ Q) , ¬ P ^ ¬ Q
proj1 dm1 f = (� p ! f (inj1 p)) , � p ! f (inj2 p)
proj2 dm1 (g , h) (inj1 p) = g p
proj2 dm1 (g , h) (inj2 q) = h q

But for the 2nd one we run into a problem in one direction:

dm2 : ¬ (P ^ Q) , ¬ P _ ¬ Q
proj1 dm2 f = ?
proj2 dm2 (inj1 f) (p , q) = f p
proj2 dm2 (inj2 g) (p , q) = g q

We cannot show ¬ (P ^ Q)) ¬ P _ ¬ Q. When we attempt to show this we
assume f : ¬ (P ^ Q), and now we need to establish ¬ P _ ¬ Q. The problem
is that we have no information which case we should choose. E.g. if we choose
to show ¬ P we assume p : P and we need to derive False. The only possibility
is to use f but this requires P ^ Q as the input and we only have P.

After all this should not be surprising: We may know that not both propo-
sitions can be false but we don’t know which one it is. E.g. if somebody tells
us that it is not true that both it rains and we go to the zoo, then we still don’t
know wether it doesn’t rain or we don’t go to the zoo or both.

So indeed while the 2nd de Morgan law holds in the boolean semantics it
doesn’t hold intuitionistically (it is not a law of Heyting algebra).

3.3 Classical principles

So what is the exact difference between the boolean logic which is also called
classical logic, and the evidence based logic which is called intuitionistic logic.
It seems that certain propositions, or actually propositional schemes since they
involved propositional variables, which are provable classically are not provably
intuitionistically. But what exactly is the difference?

It turns out that the extra power of classical logic is exactly the assumption
that every proposition is either true or false. This is expressed as the following

3.3. CLASSICAL PRINCIPLES 37

scheme which is called the law of the excluded middle or in latin tertium non
datur (the third is not given). We define

TND : prop ! prop
TND P = P _ ¬ P

This means that we write TND P to express that excluded middle holds for P.
Classical logic corresponds to assuming that TND holds for all propositions.

Let’s go back to the instance of the de Morgan law which we couldn’t prove.
It turns out that we can prove it using TND:

dm21tnd : TND P ! ¬ (P ^ Q)) ¬ P _ ¬ Q
dm21tnd (inj1 p) f = inj2 (� q ! f (p , q))
dm21tnd (inj2 np) f = inj1 np

The idea is that If P holds then we can prove ¬ P because from assuming Q we
can derive a contradiction using the premise ¬ (P ^ Q). On the other hand if
¬ P holds we are done using just this.

We can see that using TND we can simulate truth tables: this proof corre-
sponds to the algebraic proof for booleans we have done in section 3.1.

There is an alternative principle we can use, which we will see is equivalent
to TND. This is the principle of indirect proof, also called reductio ad absurdo
(reduction to the absurd) in latin. This you see in many mathematical proofs: to
prove a proposition P we assume ¬ P and derive a contradiction. Since deriving
a contradiction is the same as negation this just means that ¬ (¬ P) implies P:

RAA : prop ! prop
RAA P = ¬ (¬ P) ! P

We can show that we can derive RAA from TND using the same technqiue
we have used for the de Morgan law above:

tnd!raa : TND P ! RAA P
tnd!raa (inj1 p) nnp = p
tnd!raa (inj2 np) nnp = case? (nnp np)

We assume nnp : ¬ (¬ P). Now we analyze P using tnd: if it is p : P we are
done. On the other hand if we have np : ¬ P we can derive a contradiction
nnp np : False and then use case? to conclude.

The other direction is somehow more interesting: while we cannot prove
P _ ¬ P in general, we can show that it cannot be false. That is we can prove
¬ (¬ (P _ ¬ P)) 3

nntnd : ¬ (¬ (P _ ¬ P))
nntnd npnp = npnp (inj2 (� p ! npnp (inj1 p)))

3This should be called the principle of the excluded middle: it states that it is impossible
that a proposition is neither true nor false.

38 CHAPTER 3. PROPOSITIONAL LOGIC

It is worthwhile to step through this proof. Ok we assume npnp : ¬ (P _ ¬ P)
to derive False. The only option now is just to use npnp which means we need
to show P _ ¬ P. There is no chance that we could prove P hence lets try ¬ P.
Ok we assume p : P and have to derive False again and again there is no choice
but to use npnp and what dejavu we are back proving P _ ¬ P. But this time
we actually know p : P hence a we have to do is to use this assumption.

Now we can just use RAA (P _ ¬ P) to derive TND P from nntnd:

raa!tnd : RAA (P _ ¬ P) ! TND P
raa!tnd raa = raa nntnd

So if we assume that RAA P for all propositions P then we can also show TND Q
for all propositions, even though it is not the same one. In this sense the two
principles are equivalent.

3.4 The negative translation

We may wonder when exactly is a classical tautology provable intuitionistically,
i.e. with the propositions as types interpretation, and when not. We have seen
that one of the de Morgan rules ¬ (P _ Q) , ¬ P ^ ¬ Q is provable intuition-
istically but for the other one only one direction ¬ P _ ¬ Q) ¬ (P ^ Q) is
provable but the other direction ¬ (P ^ Q)) ¬ P _ ¬ Q required classical
reasoning.

The difference is evidence for an intuitionistic disjunction P _ Q contains
information, namely which of the P and Q actually holds. However, in the 2nd
de Morgan rule ¬ (P ^ Q) merely states that it cannot be that both P and Q
hold while ¬ P _ ¬ Q tells us which of the two actually doesn’t hold and we
cannot create this information from nothing.

We call propositions that contain information positive and the ones that do
not negative. We will see that we can understand classical logic as the logic of
negative propositions and that negative propositions are the one for which RAA
holds.

First of all we show that any negated proposition is negative

neg-is-neg : RAA (¬ P)

which expands to showing that ¬ (¬ (¬ P)) ! ¬ P which may be slightly
surprising because in general we don’t have ¬ (¬ P) ! P in general. But it
makes now sense because both sides are negative, while in the later case we can
replace P by a positive proposition.

We can show this directly, but maybe it is more instructive to do this a bit
more slowly. We can show that every proposition implies its double negation:

nn : P ! ¬ (¬ P)
nn p np = np p

Indeed this is just simple application. We can also show the following principle:

3.4. THE NEGATIVE TRANSLATION 39

neg-impl : (P ! Q) ! ¬ Q ! ¬ P

It is always good to do a little intuitive check: If we know If the sun shines we
go to the zoo then If we don’t go to the zoo the sun doesn’t shine. Here is the
proof:

neg-impl f nq p = nq (f p)

Now we can show neg-is-neg by just combining the two results:

neg-is-neg = neg-impl nn

We can also show that conjunction and implication preserve negativity (for
implication we only need that the conclusion is negative):

and-neg : RAA P ! RAA Q ! RAA (P ^ Q)
impl-neg : RAA Q ! RAA (P ! Q)

I leave this as an exercise.
The only connective that is not negative is disjunction. Classically we

can show that P _ Q is equivalent to the negative ¬ (¬ P ^ ¬ Q) because
P _ Q , ¬ (¬ (P _ Q)) and using de Morgan ¬ (P _ Q) , ¬ P ^ ¬ Q. Hence
we can define a classical disjunction:

_ _c _ : prop ! prop ! prop
P _c Q = ¬ (¬ P ^ ¬ Q)

What can we do with _ _c _? We can actually prove the injections easily:

injc1 : P ! P _c Q
injc2 : Q ! P _c Q

But what about casec : (P ! R) ! (Q ! R) ! P _c Q ! R? It turns
out that we can derive it, if we assume that R is negative:

casec : RAA R ! (P ! R) ! (Q ! R) ! P _c Q ! R

Now using classical disjunction we can actually prove excluded middle:

tndc : P _c ¬ P

Having inj1 , inj2, casec and tndc together with all the standard principles for
the remaining negative connectives we can simulate any classical proof. Any
propositional variable quantifies only over negative propositions, that is when
we assume P : prop we need to add raap : RAA P. So basically the negative
translation provides an alternative to the boolean explanation of classical logic.
However, it has a big advantage, because as we will see it also works for predicate
logic where the boolean explanation fails.

Hence classical logic can be understood as the logic of negative propositions.
Hence we can summarise that a classical logician is somebody who just can’t say
anything positive.

40 CHAPTER 3. PROPOSITIONAL LOGIC

3.5 History

Boolean algebra was invented by George Boole in the 19th century who also
gave his name to the type of booleans or short Bool. However, the laws of
boolean algebra don’t play a big role in our presentation. Truth tables were
already used in the 19th century first by Peirce and they were popularized by
Wittgenstein and Post in the early 20th century.

Intuitionistic logic was introduced by Brouwer in the 1920ies who also had
a big fight with Hilbert about the use of the excluded middle. This was called
the Grundlagenstreit (Argument about foundations).4 Hilbert complained:

Taking the principle of excluded middle from the mathematician
would be the same, say, as proscribing the telescope to the as-
tronomer or to the boxer the use of his fists. To prohibit existence
statements and the principle of excluded middle is tantamount to
relinquishing the science of mathematics altogether.

It is fair to say that Hilbert won, at least as far as mainstream Mathematics is
concerned. But don’t forget this was before the invention of computers.

It was Brouwer’s student Heyting who made the formal rules of intuition-
istic logic precise and who also came up with a constructive semantics for it,
the Brouwer-Heyting-Kolmogorov interpretation which is closely related to the
propositions as types explanation but it uses untyped realizers.

The propositions as types explanation is also called the Curry-Howard Iso-
morphism: 5 they observed an analogy between the rules of logic and the rules
of typed �-calculus. I prefer calling it the propositions as types explanation
because where does logic come form in the first place? I think we should use
the idea that propositions can be identified with the type of their evidence to
justify the rules of logic. In this way the semantics comes first and the formal
rules are just a reflection of the semantics. While this is not historically correct,
I think this is a better way to look at this.

The negative translation which is also called the double negation translation
goes back to Gödel and Gentzen. In the context of functional programming it
is also known as the continuation passing style transformation (CPS transform)
which provides a translation for control operators like call-cc (call with current
continuation).

3.6 Exercises

1. Define the operations

implb : Bool ! Bool ! Bool
== : Bool ! Bool ! Bool

4I recommend van Dalen’s biography of Brouwer which also includes lots of details about
this famous disagreement. [VD99]

5It was first observed by Curry in a letter in 1934 and later refined by Howard in 1969 but
this was only published in 1980 [How80].

3.6. EXERCISES 41

Here implb is the boolean version of implication. There are given by the
following truth tables:

P Q implb P Q P == Q
false false true true
false true true false
true false false false
true true true true

2. if_then_else_ is a basic combinator on Bool. It is defined as follows

if_then_else : Bool ! A ! A ! A
if true then y else z = y
if false then y else z = z

Define all the logical operations

& : Bool ! Bool ! Bool
| : Bool ! Bool ! Bool
!_ : Bool ! Bool
implb : Bool ! Bool ! Bool
== : Bool ! Bool ! Bool

in agda using only if_then_else (i..e without using pattern matching).

3. Prove the following equivalences. It is helpful to use some auxilliary state-
ments to be able to use pattern matching more easily.
All propositions in this part are provable.

e1 : (P ! Q ^ R) , ((P ! Q) ^ (P ! R))
e2 : (P _ Q ! R) , ((P ! R) ^ (Q ! R))

4. We are playing logic poker today.
Try to prove the following propositions using Agda.

P1 = {P Q : prop} ! (P) Q)) ¬ P) ¬ Q
P2 = {P Q : prop} ! (P) Q)) ¬ Q) ¬ P
P3 = {P Q : prop} ! (P) Q)) ¬ P _ Q
P4 = {P Q : prop} ! ¬ P _ Q) (P) Q)
P5 = {P : prop} ! ¬ (P , ¬ P)
P6 = {P : prop} ! ¬ (P _ ¬ P)
P7 = {P : prop} ! ¬ (¬ (¬ P))) ¬ P
P8 = {P Q : prop} ! ((P) Q)) P)) P
P9 = {P : prop} ! (¬ (¬ P)) P)) P _ ¬ P
P10 = {P : prop} ! P _ ¬ P) (¬ (¬ P)) P)

Consider the following cases:

42 CHAPTER 3. PROPOSITIONAL LOGIC

(a) You can prove it directly (intuitionistically). E.g. you have

Pa = {P : prop} ! P ! P

in this case you just provide a proof:

pa : Pa
pa x = x

(b) You cannot prove it with intuitionistic logic but you can prove it with
classical logic.
E.g. if I ask you to prove

Pb = {P Q : prop} ! ¬ (P ^ Q) ! ¬ P _ ¬ Q

and you realize that you cannot prove this intutionistically but you
can prove it with classical logic that is using RAA P for some propo-
sition P : prop. I define

CLASS = {P : prop} ! RAA P

and you prove

pb : CLASS ! Pb

When you prove pa you get an extra parameter raa which you can
use in the proof:

pb raa h =
raa (� x ! x (inj1 (� p ! x (inj2 (� q ! h (p , q))))))

If you need TND P you can use raa!tnd.
(c) It isn’t even true in classical logic. In this case you should find

a counterexample. That is you should be able to instantiate the
propositional variables with > and ? and prove the negation.

Pc = {P Q : prop} ! P ! Q

but you realize that this is false by instantiating P = > and Q = ?.
Ok, in this case you prove

pc : Pc ! ?
pc h = h {>} {?} tt

5. Complete the missing proofs from the negative translation (section 3.4):

and-neg : RAA P ! RAA Q ! RAA (P ^ Q)
impl-neg : RAA Q ! RAA (P ! Q)

3.6. EXERCISES 43

injc1 : P ! P _c Q
injc2 : Q ! P _c Q
casec : RAA R ! (P ! R) ! (Q ! R) ! P _c Q ! R
tndc : P _c ¬ P

Hint: It is useful to prove that double negation is monotone:

(P ! Q) ! ¬ (¬ P) ! ¬ (¬ Q)

