
Chapter 7

Programs and proofs

While in the last chapter I have spent some effort to introduce a nice syntax for
predicate logic resembling the commonly used symbols actually in type theory
we usually stick to ⇧-types and ⌃-types where the latter are usually replaced
by more generic record types. One of the reasons for this is that the proofs and
programs or logic and types are not always clearly separable.

Let’s for example consider a program that sorts natural numbers. It should
have the type

sort : List N ! List N

Let’s say we want to be more specific and express in the type that the program
does actually sorts its input. Let’s assume we have defined a predicated Sorted :
List N ! prop which expressed that a list is sorted and a relation _~_ :
List N ! List N ! prop where l ⇠ l’ means that both lists have the same
elements but in a different order (we say one is a permutation of the other).
Now we can define a more refined output type as a record:

record SortSpec (inp : List N) : Set where
out : List N
sorted : Sorted out
perm : inp ⇠ out

and our sorting program now has the type

sort : (inp : List N) ! SortSpec inp

By the way this shows how we can also use ⌃-types or record types to express
what is called comprehension in set theory, that is:

SortSpec out = {out : List N | Sorted out ^ inp ⇠ out}

However, the point I want to make is that we think or the list out as data and
the other two components sorted and perm as proofs of propositions. However, if

109

110 CHAPTER 7. PROGRAMS AND PROOFS

we want to use the sort-function to externally sort a sequence maybe using some
robot then it is perm which tells us how the items should be rearranged! That is
what has been a proof becomes data and we should have said: _~_ : List N !
List N ! Set. Hence the distinction between Set and prop we have made was
a bit artificial and maybe we should have stuck to Set anyway.

7.1 Decidability of equality

We are going to look at another program that combines logic and types. We
can define a function that decides wether two natural numbers are equal:

eqb : N ! N ! Bool
eqb zero zero = true
eqb zero (suc n) = false
eqb (suc m) zero = false
eqb (suc m) (suc n) = eqb m n

While this is a perfectly fine program we have to read its code to see that it is
doing the right thing. Ok, this is maybe easy in this case but wouldn’t it be
nicer if the type says what the program is doing (as in our improved version
of sort)? And not only nicer but also potentially more useful because this sort
of information may come in handy when we want to prove something about
some program that uses eqb. That is we would like to express that eqb decides
⌘ {N}.

Here we can exploit an advantage of working in a logic where P _ ¬ P is not
a tautology because we can use P _ ¬ P to express that P has been decided, i.e.
we know wether it is true or false. Since this construction is used frequently,
there is an explicit definition as a sum:

data Dec (P : Set) : Set where
yes : P ! Dec P
no : ¬ P ! Dec P

That is Dec P is equivalent to P _ ¬ P and expresses that P has been decided.
Examples for propositions which can be decided easily are True and False:

decTrue : Dec True
decTrue = yes tt
decFalse : Dec False
decFalse = no case?

More interesting cases of decided propositions include Fermat’s last theorem but
not for example P=NP, i.e. wether the class of problems solvable in deterministic
and non-deterministic polynomial time are the same. While most people think
that the answer is no, nobody has got a proof so we cannot prove Dec P=NP.

7.1. DECIDABILITY OF EQUALITY 111

There is some hope that one day P=NP will be decided some day and we may
wonder wether there are intrinsically undecidable propositions? The answer is
no , because we proved

nntnd : {P : prop} ! ¬ (¬ (P _ ¬ P))

in section 3.3.
We can use the notion of decided to express what it means for a predicate

P : A ! prop to be decidable, it means that we can decide each instance:

(x : A) ! Dec (P x)

It is not worth to define a predicate decidable because it would only work for
predicates but not for relations and our first application is exactly the deciability
of _⌘_ {N}:

⌘N? : (m n : N) ! Dec (m ⌘ n)

The first case is easy:

zero ⌘N? zero = yes refl

We say yes and we give the reason. In the next case we want to say no:

zero ⌘N? suc n = no ?

We need to show ¬ (zero ⌘ suc n). It turns out that this can be done just by
local pattern matching because agda knows that different constructors cannot
be equal:

zero ⌘N? suc n = no � ()

The nest case is symmetric and we use the same trick:

suc m ⌘N? zero = no � ()

Finally if both inputs start with a succesor we have to inveestigate the result of
the recursive call:

suc m ⌘N? suc n with m ⌘N? n
(suc m ⌘N? suc n) | yes p = ?
(suc m ⌘N? suc n) | no np = ?

In the yes case we can just match x:

suc m ⌘N? suc n with m ⌘N? n
(suc m ⌘N? suc .m) | yes refl = yes refl
(suc m ⌘N? suc n) | no np = ?

The negative case is a bit more interesting. Certainly if ¬ (m ⌘ n) then also
¬ (suc m ⌘ suc n):

112 CHAPTER 7. PROGRAMS AND PROOFS

suc m ⌘N? suc n with m ⌘N? n
(suc m ⌘N? suc .m) | yes refl = yes refl
(suc m ⌘N? suc n) | no np = no (� p ! np ?)

At this point we need to show m ⌘ n and we know p : suc m ⌘ suc n hence
we need to know that suc is injective. This is easy to prove using (local) pattern
matching:

suc m ⌘N? suc n with m ⌘N? n
(suc m ⌘N? suc .m) | yes refl = yes refl
(suc m ⌘N? suc n) | no np = no (� {refl ! np refl})

If we look at the whole function definition again:

⌘N? : (m n : N) ! Dec (m ⌘ n)
zero ⌘N? zero = yes refl
zero ⌘N? suc n = no � ()
suc m ⌘N? zero = no � ()
suc m ⌘N? suc n with m ⌘N? n
(suc m ⌘N? suc .m) | yes refl = yes refl
(suc m ⌘N? suc n) | no np = no (� {refl ! np refl})

we see that it has exactly the same structure as eqb but instead of returning
a boolean we return an element of Dec (m ⌘ n) which is basically a boolean
with the reason that we are allowed to return it.

Hence decidability is an example where we can refine a simply typed pro-
gram with a non very expressive type into a type which tells us exactly what
the function is doing. Again we see that the border between reasoning and
programming is rather fluid.

7.1.1 Church’s thesis

While we cannot have a proposition which cannot be decided, it is possible
to have a predicate or a relation which is not decidable. Indeed the Halting
problem provides an example, which we can view as a predicate

Halts : N ! prop

assuming that we use some encoding of programs (e.g. Turing machines) as
natural numbers. Can we show:

undecHalt : ((n : N) ! Dec (Halts n)) ! ?

The answer is no: Type Theory still allows us to assume the excluded middle
for all propositions

tnd : {P : prop} ! Dec P

7.2. INDUCTIVELY DEFINED RELATIONS: LESS OR EQUAL 113

and using this there is a trivial proof of (n : N) ! Dec (Halts n) and hence
it is inconsistent to have both undecHalt and tnd. We can assume a principle
which says that all functions on the natural numbers are computable (this is
called Church’s thesis) and using this we can prove undecHalt. Hence, clearly
Church’s thesis is inconsistent with classical logic, it is anti-classical.

7.1.2 Uniqueness of equality proofs

In Type Theory we can ask questions that don’t make sense in conventional
reasoning. For example we may wonder whether there is at most one way to
prove that two numbers are equal

uipN : {m n : N} (p q : m ⌘ n) ! p ⌘ q

This is interesting because it shows that _⌘_ {N} is propositional. Ok, previ-
ously we have said that prop = Set and I have argued that the distinction is
not very precise. However, we may say that a type is a proposition if it contains
no other information but that it is inhabited. That is all elements are equal.

It seems that we can prove uipN in a generic way using pattern matching.
We match the first element:

uipN refl q = ?

Now we have q : m ⌘ m. Can we pattern match this? Before we were
instantiating at least one of the arguments, but this time they are already equal.
One may think this doesn’t matter and:

uipN refl refl = ?

Now we just have to show refl ⌘ ref which is easy:

uipN refl refl = refl

However, the last pattern matching isn’t completely uncontroversial and in par-
ticular it is inconsistent with Homotopy Type Theory which we will be consid-
ering later. We can rule out this proof by enabling the option --without-K
which will reject the pattern matching on q.

However, it turns out that in this particular case we can still prove uipN.
This is an instance of Hedberg’s theorem which tells us that uip holds for any
type which has a decidable equality.

7.2 Inductively defined relations: less or equal

The equality relation has been defined as an inductive type in a particular
simple way: we only needed one constructor. Inductively defined relations and
predicates are quite useful in general and we shall use the less or equal relation
on natural numbers _6_ : N ! N ! Set as an example.

114 CHAPTER 7. PROGRAMS AND PROOFS

There are various ways to define _6_, e.g. we can use addition m 6 n =
9[k 2 N] k + m ⌘ n. However, here we shall go another way and define the
relation as given by some deduction rules:

0 6 n le0
m 6 n

suc m 6 suc n leS

We can use these rules to derive for example that 1 6 3:

0 6 2 le0

1 6 3 leS

On the other hand there cannot be a derivation of 3 6 1. The only rule directly
applicable is leS and after this we are stuck because no rule applies:

impossible
2 6 0
3 6 1 leS

We can turn this idea into an inductive definition with le0 and leS as construc-
tors:

data _6_ : N ! N ! Set where
le0 : {n : N} ! zero 6 n
leS : {m n : N} ! m 6 n ! suc m 6 suc n

The derivation of 1 6 3 can be expressed:

1 63 : 1 6 3
1 63 = leS le0

Using pattern matching we can show ¬ (3 6 1):

¬361 : ¬ (3 6 1)
¬361 x = ?

We pattern match x : 3 6 1, only leS is applicable:

¬361 : ¬ (3 6 1)
¬361 (leS x) = ?

Now x : 2 6 0 and no constructor is applicable, hence we get the empty pattern:

¬361 : ¬ (3 6 1)
¬361 (leS ())

and we are done.
Let’s establish some basic properties of _6_, it is reflexive, transitive and

antisymmetric. A relation with these properties is called a partial order. We

7.2. INDUCTIVELY DEFINED RELATIONS: LESS OR EQUAL 115

have already seen reflexivity and transitivity from equality which was an equiv-
alence relation. Antisymmetry is not exactly the opposite of symmetry but it
says that m 6 n and m 6 n can only both hold, if m ⌘ n.

We start with reflexivity which we can prove by induction over natural num-
bers:

refl6 : {n : N} ! n 6 n
refl6 {zero} = le0
refl6 {suc n} = leS (refl6 {n})

Transitivity is maybe more interesting.

trans6 : { l m n : N} ! l 6 m ! m 6 n ! l 6 n

trans6 p q = ?

Here we need to do an induction over derivations, which just corresponds to
pattern matching

trans6 le0 q = ?
trans6 (leS p) q = ?

The first case zero 6 n is easily dealt with:

trans6 le0 q = le0

While the 2nd needs a further induction / pattern matching over the 2nd deriva-
tion q : suc m 6 n but luckily onle one rule applies:

trans6 (leS p) (leS q) = ?

And now to show suc l 6 suc n we only need to use leS and recursion, aka appeal
to the induction hypothesis:

trans6 (leS p) (leS q) = leS (trans6 p q)

The proof of antisymmetry:

antisym : {m n : N} ! m 6 n ! n 6 m ! m ⌘ n

works in a similar way: we do induction over both derivations and nicely our
first choice limits the 2nd:

antisym le0 le0 = refl
antisym (leS p) (leS q) = cong suc (antisym p q)

In the 2nd line we reduce showing suc m ⌘ suc n to m ⌘ n using cong suc and
this we can prove recursively.

Indeed, _6_ is decidable, which is a refinement of the boolean function:

116 CHAPTER 7. PROGRAMS AND PROOFS

leb : N ! N ! Bool
leb zero n = true
leb (suc m) zero = false
leb (suc m) (suc n) = leb m n

This is similar to our construction of _⌘?_:

6? : (m n : N) ! Dec (m 6 n)
zero 6? n = yes le0
suc m 6? zero = no (� ())
suc m 6? suc n with m 6? n
(suc m 6? suc n) | yes x = yes (leS x)
(suc m 6? suc n) | no x = no (� {(leS p) ! x p})

In the last case we are exploiting that leS is invertible, i.e. that suc m 6 suc n
implies m 6 n. This follows by pattern matching since leS is the only constructor
that can prove suc m 6 suc n.

Finally, we may ask wether m 6 n is a proposition in the sense explained
in the last section. Indeed, it should be clear that it is, since we never had
a choice between derivations. However, this time there are no issues and the
construction is permitted even without K.

isProp6 : {m n : N} (p q : m 6 n) ! p ⌘ q
isProp6 le0 le0 = refl
isProp6 (leS p) (leS q) = cong leS (isProp6 p q)

In the last line we actually use cong on a proof rule: we reduce showing leS p ⌘
leS q to p ⌘ q which can be done by recursion.

7.3 An alternative definition of less or equal

The definition of _6_ in the previous section is not the only possibility. Here
is an alternative:

data _6’_ : N ! N ! Set where
le’refl : {m : N} ! m 6’ m
le’S : {m n : N} ! m 6’ n ! m 6’ suc n

We use le’refl to show that n 6 n and then we can raise the second argument
using le’S. So for example:

1 6’3 : 1 6’ 3
1 6’3 = le’S (le’S le’refl)

And using pattern matching we can still show negative results:

¬36’1 : ¬ (3 6’ 1)
¬36’1 (le’S ())

7.3. AN ALTERNATIVE DEFINITION OF LESS OR EQUAL 117

I hope it is intuitively clear that _6_ and _6’_ define the same relation. Let’s
show this in agda:

6,6’ : {m n : N} ! m 6 n , m 6’ n

We have to define functions in both directions, mapping one sort of derivations
into the other and vice versa.

proj1 6,6’ p = ?
proj2 6,6’ p = ?

Let’s look at the first line. We analyse the derivation of m 6 n

proj1 6,6’ le0 = ?
proj1 6,6’ (leS p) = ?

We observe that we need to prove that _6’_ is closed under the rules defining
6. That is we need to establish

le06’ : {n : N} ! zero 6’ n
suc’6’ : {m n : N} ! m 6’ n ! suc m 6’ suc n

For the first one we use recursion over n : N:

le06’ {zero} = le’refl
le06’ {suc n} = le’S (le06’ {n})

and for the second we do an induction over the derivation of m 6’ n:

suc’6’ le’refl = le’refl
suc’6’ (le’S p) = le’S (suc’6’ p)

Using these we can recursively substitute the rules used to derive m 6 n to prove
m 6’ n.

proj1 6,6’ le0 = le06’
proj1 6,6’ (leS p) = suc’6’ (proj1 6,6’ p)

We apply the same strategy for the other direction. We now need to show that
6 is closed under the rules defining _6’_. The first one we have already
done, when we showed that _6_ is reflexive, but we still need to show the 2nd
which we derive again by recursion over derivations:

leS6 : {m n : N} ! m 6 n ! m 6 suc n
leS6 le0 = le0
leS6 (leS p) = leS (leS6 p)

Here is the complete proof:

118 CHAPTER 7. PROGRAMS AND PROOFS

6,6’ : {m n : N} ! m 6 n , m 6’ n
proj1 6,6’ le0 = le06’
proj1 6,6’ (leS p) = suc’6’ (proj1 6,6’ p)
proj2 6,6’ le’refl = refl6
proj2 6,6’ (le’S p) = leS6 (proj2 6,6’ p)

In the usual jargon we could say that _6_ is the least relation closed under
the rules defining it and once we show that _6’_ is closed under the same rules
we know that m 6 n implies m 6’ n. However, this seems a bit ambitious, do we
really need to think about the least relation among all relations? The reasoning
we are using here is more concrete, we just mapping trees to trees. There is no
need to think about the least relation

7.4 History

The idea that we can use dependent types to support a programming style where
programs are intrinsically correct is quite recent. It goes along with the evolution
of implementations such as the ALF system [AGNvS94] in Gothenburg, Conor
McBride’s OLEG [McB00a] which grew out of the LEGO system [LP92]. 1

OLEG later evolved to Epigram [McB04] which together with ALF provided
much input into Agda.

I made the case for progification as a synthesis of programming and verifi-
cation in an unpublished paper [Alt94]. This was also the base of my course at
the ESSLI summer school in Prague in 1996 [Alt96] on Integrated verification
inType Theory which also featured an introduction to ALF.

Conor McBride 2 is the most influential contributor to the this style of
writing correct programs using dependent types (see his PhD thesis [McB00a]):
he has explained this in many of his gigs which involved animations made with
plastic slides in a time when we still used overhead projectors. Most famous is
his talk Winging It [McB09] where he explains dependent types by an analogy
with a proletarian revolution: the terms are the workers on the left of the colon
whereas the types are the bourgeoisie on the right hand side of the colon who
have no idea about work.

1Conor said that OLEGO was a rearrangemengt of LEGO which referred to the treatment
of holes. However, it was also necessary to rearrange the name due tothreats by lawyers of
the LEGO compnay now that the internet was growing beyond academia.

2For full disclosure: Conor was like me supervised by Rod Burstall in Edinburgh.

7.4. HISTORY 119

However, the established social oder is overcome and the terms march through
the colon. Are the types now running away in panic?

No, they are actually happy about their new expressivity:

Jointly with James McKinna many of the ideas are explained in The view

120 CHAPTER 7. PROGRAMS AND PROOFS

from the left [MM04] and later in our joint and also our unpublished paper
[AMM05] on why dependent types matter?.

7.5 Exercises

1. Show that equality for the type Expr as defined in section 4.3.2 is decidable.

data Expr : Set where
const : N ! Expr
[+] : Expr ! Expr ! Expr
[*] : Expr ! Expr ! Expr

That is construct a program of the following type:

⌘Expr? : (e f : Expr) ! Dec (e ⌘ f)

You may use _⌘N?_.

2. Prove uniqueness of equality proofs for _⌘_ {N} without using K, that
is with the flag --without-K enabled.

uipN : {m n : N} (p q : m ⌘ n) ! p ⌘ q

Remark: While this is a consequence of Hedberg’s theorem which we will
introduce later — it is also possible to prove it directly. For this purpose
it may be helpful to define equality for the natural numbers inductively:

data _~N_ : N ! N ! Set where
zero : zero ~N zero
suc : {m n : N} ! m ~N n ! suc m ~N suc n

and then showing that the _⌘_ {N} and _~N_ are equivalent (Actu-
ally it is enough to establish a retraction, that is a function and with an
inverse). It should be straightforward to show uniqueness for _~N_.

3. A common definition of 6 avoiding the use of an inductively defined family
is

6+ : N ! N ! prop
m 6+ n = 9[k 2 N] k + m ⌘ n

or equivalently one could also use:

+6 : N ! N ! prop
m +6 n = 9[k 2 N] m + k ⌘ n

7.5. EXERCISES 121

Show that they are logically equivalent to _6_ or _6’_ without having
to use commutativity of _+_. That is show

R,S : {m n : N} ! m R n , m S n

for R being 6+ or +6 and depending on the choice for R, S is either 6
or 6’.

122 CHAPTER 7. PROGRAMS AND PROOFS

